Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 79: 30-38, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38040289

RESUMO

Microbial communities have long been observed in oil reservoirs, where the subsurface conditions are major drivers shaping their structure and functions. Furthermore, anthropogenic activities such as water flooding during oil production can affect microbial activities and community compositions in oil reservoirs through the injection of recycled produced water, often associated with biocides. However, it is still unclear to what extent the introduced chemicals and microbes influence the metabolic potential of the subsurface microbiome. Here we investigated an onshore oilfield in Germany (Field A) that undergoes secondary oil production along with biocide treatment to prevent souring and microbially induced corrosion (MIC). With the integrated approach of 16 S rRNA gene amplicon and shotgun metagenomic sequencing of water-oil samples from 4 production wells and 1 injection well, we found differences in microbial community structure and metabolic functions. In the injection water samples, amplicon sequence variants (ASVs) belonging to families such as Halanaerobiaceae, Ectothiorhodospiraceae, Hydrogenophilaceae, Halobacteroidaceae, Desulfohalobiaceae, and Methanosarcinaceae were dominant, while in the production water samples, ASVs of families such as Thermotogaceae, Nitrospiraceae, Petrotogaceae, Syntrophaceae, Methanobacteriaceae, and Thermoprotei were also dominant. The metagenomic analysis of the injection water sample revealed the presence of C1-metabolism, namely, genes involved in formaldehyde oxidation. Our analysis revealed that the microbial community structure of the production water samples diverged slightly from that of injection water samples. Additionally, a metabolic potential for oxidizing the applied biocide clearly occurred in the injection water samples indicating an adaptation and buildup of degradation capacity or resistance against the added biocide.


Assuntos
Desinfetantes , Microbiota , Humanos , Campos de Petróleo e Gás , Efeitos Antropogênicos , Bactérias/metabolismo , Água , Desinfetantes/metabolismo
2.
Appl Environ Microbiol ; 89(3): e0192722, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36815794

RESUMO

Polycyclic aromatic hydrocarbons are persistent pollutants of anthropogenic or natural origin in the environment and accumulate in anoxic habitats. In this study, we investigated the mechanism of the enzyme naphthalene carboxylase as a model reaction for polycyclic aromatic hydrocarbon activation by carboxylation. An enzyme assay was established with cell extracts of the highly enriched culture N47. In assays without addition of ATP, naphthalene carboxylase catalyzed a stable isotope exchange of the carboxyl group of naphthoate with 13C-labeled bicarbonate buffer, which can only occur via a partial backwards reaction of the naphthalene carboxylase reaction to an intermediate that does not include the carboxyl group. Hence, a new carboxyl group from the labeled bicarbonate is added upon forward reaction to the naphthoate. This indicates that the reaction mechanism consists of two or more steps and that at least the latter steps are reversible and ATP independent. Naphthalene carboxylation assays were carried out in deuterated buffer and revealed the incorporation of 0, 1, 2, or 3 deuterium atoms in the final product naphthoyl-coenzyme A, indicating that the reaction is fully reversible. Putative reaction mechanisms were tested by quantum mechanical calculations. The proposed mechanism of the reaction consists of three steps: the activation of the naphthalene by 1,3-dipolar cycloaddition of the cofactor prFMN to naphthalene, release of a proton and rearomatization producing a stable intermediate, and a carboxylation with a reverse 1,3-dipolar cycloaddition and cleavage of the bond to the cofactor producing 2-naphthoate. IMPORTANCE Pollution with polycyclic aromatic hydrocarbons poses a great hazard to humans and animals, with considerable long-term effects. The anaerobic degradation of polycyclic aromatic hydrocarbons in anoxic zones and anaerobic growth of such organisms is very slow, leading to only poor investigation of the degradation pathways, so far. In this work, we elucidated the mechanism of naphthalene carboxylase, a key enzyme in anaerobic naphthalene degradation. This is the first mechanism proposed for a carboxylase targeting nonsubstituted (polycyclic) aromatic compounds and can serve as a model for the initial activation reaction in the anaerobic degradation of benzene or nonsubstituted polycyclic aromatic hydrocarbons, as well as similar enzymatic reactions from the expanding class of UbiD-like (de)carboxylases.


Assuntos
Mononucleotídeo de Flavina , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Mononucleotídeo de Flavina/metabolismo , Sulfatos/metabolismo , Bicarbonatos , Reação de Cicloadição , Anaerobiose , Naftalenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Trifosfato de Adenosina/metabolismo , Biodegradação Ambiental
4.
Sci Total Environ ; 807(Pt 3): 151066, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673060

RESUMO

Heavy metals such as zinc cannot be degraded by microorganisms and form long contaminant plumes in groundwater. Conventional methods for remediating heavy metal-contaminated sites are for example excavation and pump-and-treat, which is expensive and requires very long operation times. This induced interest in new technologies such as in situ adsorption barriers for immobilization of heavy metal contamination. In this study, we present steps and criteria from laboratory tests to field studies, which are necessary for a successful implementation of an in situ adsorption barrier for immobilizing zinc. Groundwater and sediment samples from a contaminated site were brought to the lab, where the adsorption of zinc to Goethite nanoparticles was studied in batch and in flow-through systems mimicking field conditions. The Goethite nanoparticles revealed an in situ adsorption capacity of approximately 23 mg Zn per g Goethite. Transport experiments in sediment columns indicated an expected radius of influence of at least 2.8 m for the injection of Goethite nanoparticles. These findings were validated in a pilot-scale field study, where an in situ adsorption barrier of ca. 11 m × 6 m × 4 m was implemented in a zinc-contaminated aquifer. The injected nanoparticles were irreversibly deposited at the desired location within <24 h, and were not dislocated with the groundwater flow. Despite a constantly increasing inflow of zinc to the barrier and the short contact time between Goethite and zinc in the barrier, the dissolved zinc was effectively immobilized for ca. 90 days. Then, the zinc concentrations increased slowly downstream of the barrier, but the barrier still retained most of the zinc from the inflowing groundwater. The study demonstrated the applicability of Goethite nanoparticles to immobilize heavy metals in situ and highlights the criteria for upscaling laboratory-based determinants to field-scale.


Assuntos
Água Subterrânea , Zinco , Adsorção , Compostos Férricos , Laboratórios
5.
FEMS Microbiol Ecol ; 97(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34864985

RESUMO

Microbial degradation influences the quality of oil resources. The environmental factors that shape the composition of oil microbial communities are largely unknown because most samples from oil fields are impacted by anthropogenic oil production, perturbing the native ecosystem with exogenous fluids and microorganisms. We investigated the relationship between formation water geochemistry and microbial community composition in undisturbed oil samples. We isolated 43 microliter-sized water droplets naturally enclosed in the heavy oil of the Pitch Lake, Trinidad and Tobago. The water chemistry and microbial community composition within the same water droplet were determined by ion chromatography and 16S rRNA gene amplicon sequencing, respectively. The results revealed a high variability in ion concentrations and community composition between water droplets. Microbial community composition was mostly affected by the chloride concentration, which ranged from freshwater to brackish-sea water. Remarkably, microbial communities did not respond gradually to increasing chloride concentration but showed a sudden change to less diverse and uneven communities when exceeding a chloride concentration of 57.3 mM. The results reveal a threshold-regulated response of microbial communities to salinity, offering new insights into the microbial ecology of oil reservoirs.


Assuntos
Microbiota , Salinidade , Bactérias/genética , Lagos , RNA Ribossômico 16S/genética
6.
Environ Sci Technol ; 55(15): 10821-10831, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34288663

RESUMO

Microbial reduction of Fe(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focused on OM-mediated effects on electron uptake and alterations in Fh crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and included-unlike water-extractable OM-compounds released by microbial activity under anoxic conditions. We found that organic molecules in efOM had generally no or only very low electron-accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh. Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe(III) reduction by passivating the Fh surface toward electron uptake. In contrast, coprecipitation of Fh with efOM accelerated the microbial reduction, likely because efOM disrupted the Fh structure, as noted by Mössbauer spectroscopy. Additionally, the adsorbed and coprecipitated efOM resulted in a more sustained Fe(III) reduction, potentially because efOM could have effectively scavenged biogenic Fe(II) and prevented the passivation of the Fh surface by the adsorbed Fe(II). Fe(III)-OM coprecipitates forming at anoxic-oxic interfaces are thus likely readily reducible by Fe(III)-reducing bacteria in redoximorphic soils.


Assuntos
Compostos Férricos , Solo , Geobacter , Ferro , Minerais , Oxirredução
7.
Environ Sci Technol ; 55(13): 8700-8708, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34169718

RESUMO

Microorganisms are present in nearly every oil or bitumen sample originating from temperate reservoirs. Nevertheless, it is very difficult to obtain reliable estimates about microbial processes taking place in deep reservoirs, since metabolic rates are rather low and differ strongly during artificially cultivation. Here, we demonstrate the importance and impact of microorganisms entrapped in microscale water droplets for the overall biodegradation process in bitumen. To this end, we measured degradation rates of heavily biodegraded bitumen from the Pitch Lake (Trinidad and Tobago) using the novel technique of reverse stable isotope labeling, allowing precise measurements of comparatively low mineralization rates in the ng range in microcosms under close to natural conditions. Freshly taken bitumen samples were overlain with artificial brackish water and incubated for 945 days. Additionally, three-dimensional distribution of water droplets in bitumen was studied with computed tomography, revealing a water bitumen interface of 1134 cm2 per liter bitumen, resulting in an average mineralization rate of 9.4-38.6 mmol CO2 per liter bitumen and year. Furthermore, a stable and biofilm-forming microbial community established on the bitumen itself, mainly composed of fermenting and sulfate-reducing bacteria. Our results suggest that small water inclusions inside the bitumen substantially increase the bitumen-water interface and might have a major impact on the overall oil degradation process.


Assuntos
Petróleo , Bactérias , Biodegradação Ambiental , Hidrocarbonetos
8.
Microorganisms ; 9(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065975

RESUMO

The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rock environments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology.

9.
FEMS Microbiol Ecol ; 97(5)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33720296

RESUMO

Marine sediments can contain large amounts of alkanes and methylated aromatic hydrocarbons that are introduced by natural processes or anthropogenic activities. These compounds can be biodegraded by anaerobic microorganisms via enzymatic addition of fumarate. However, the identity and ecological roles of a significant fraction of hydrocarbon degraders containing fumarate-adding enzymes (FAE) in various marine sediments remains unknown. By combining phylogenetic reconstructions, protein homolog modelling, and functional profiling of publicly available metagenomes and genomes, 61 draft bacterial and archaeal genomes encoding anaerobic hydrocarbon degradation via fumarate addition were obtained. Besides Desulfobacterota (previously known as Deltaproteobacteria) that are well-known to catalyze these reactions, Chloroflexi are dominant FAE-encoding bacteria in hydrocarbon-impacted sediments, potentially coupling sulfate reduction or fermentation to anaerobic hydrocarbon degradation. Among Archaea, besides Archaeoglobi previously shown to have this capability, genomes of Heimdallarchaeota, Lokiarchaeota, Thorarchaeota and Thermoplasmata also suggest fermentative hydrocarbon degradation using archaea-type FAE. These bacterial and archaeal hydrocarbon degraders occur in a wide range of marine sediments, including high abundances of FAE-encoding Asgard archaea associated with natural seeps and subseafloor ecosystems. Our results expand the knowledge of diverse archaeal and bacterial lineages engaged in anaerobic degradation of alkanes and methylated aromatic hydrocarbons.


Assuntos
Archaea , Fumaratos , Anaerobiose , Archaea/genética , Bactérias/genética , Sedimentos Geológicos , Hidrocarbonetos , Filogenia
10.
Curr Microbiol ; 78(3): 894-903, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33544185

RESUMO

Aquaponic systems are sustainable solutions for food production combining fish growth (aquaculture) and production of vegetables (hydroponic) in one recirculating system. In aquaponics, nitrogen-enriched wastewater from fish in the aquaculture serves as fertilizer for the plants in the hydroponics, while the nitrogen-depleted and detoxified water flows back to the aquaculture. To investigate bacterial nitrogen-cycling in such an aquaponic system, measurements of nitrogen species were coupled with time-resolved 16S rRNA gene profiling and the functional capacity of organisms was studied using metagenomics. The aquaponic system was consistently removing ammonia and nitrite below 23 µM and 19 µM, and nitrate to steady-state concentrations of about 0.5 mM. 16S rRNA gene amplicon sequencing of sediments exposed in the pump sump revealed that typical signatures of canonical ammonia-oxidising microorganisms were below detection limit. However, one of the most abundant operational taxonomic units (OTU) was classified as a member of the genus Nitrospira with a relative abundance of 3.8%. For this genus, also genome scaffolds were recovered encoding the only ammonia monooxygenase genes identified in the metagenome. This study indicates that even in highly efficient aquaponic systems, comammox Nitrospira were found to participate in ammonium removal at low steady-state ammonia concentrations.


Assuntos
Compostos de Amônio , Amônia , Animais , Bactérias/genética , Hidroponia , Nitrificação , Oxirredução , RNA Ribossômico 16S/genética
11.
J Contam Hydrol ; 237: 103741, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341658

RESUMO

Remediation of heavy metal-contaminated aquifers is a challenging process because they cannot be degraded by microorganisms. Together with the usually limited effectiveness of technologies applied today for treatment of heavy metal contaminated groundwater, this creates a need for new remediation technologies. We therefore developed a new treatment, in which permeable adsorption barriers are established in situ in aquifers by the injection of colloidal iron oxides. These adsorption barriers aim at the immobilization of heavy metals in aquifers groundwater, which was assessed in a large-scale field study in a brownfield site. Colloidal iron oxide (goethite) nanoparticles were used to install an in situ adsorption barrier in a very heterogeneous, contaminated aquifer of a brownfield in Asturias, Spain. The groundwater contained high concentrations of heavy metals with up to 25 mg/L zinc, 1.3 mg/L lead, 40 mg/L copper, 0.1 mg/L nickel and other minor heavy metal pollutants below 1 mg/L. High amounts of zinc (>900 mg/kg), lead (>2000 mg/kg), nickel (>190 mg/kg) were also present in the sediment. Ca. 1500 kg of goethite nanoparticles of 461 ± 266 nm diameter were injected at low pressure (< 0.6 bar) into the aquifer through nine screened injection wells. For each injection well, a radius of influence of at least 2.5 m was achieved within 8 h, creating an in situ barrier of 22 × 3 × 9 m. Despite the extremely high heavy metal contamination and the strong heterogeneity of the aquifer, successful immobilization of contaminants was observed in the tested area. The contaminant concentrations were strongly reduced immediately after the injection and the abatement of the heavy metals continued for a total post-injection monitoring period of 189 days. The iron oxide particles were found to adsorb heavy metals even at pH-values between 4 and 6, where low adsorption would have been expected. The study demonstrated the applicability of iron oxide nanoparticles for installing adsorption barriers for containment of heavy metals in contaminated groundwater under real conditions.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Adsorção , Nanopartículas Magnéticas de Óxido de Ferro , Espanha , Poluentes Químicos da Água/análise
12.
Front Microbiol ; 11: 1271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655526

RESUMO

There are two main strategies known how microorganisms regulate substrate utilization: specialization on one preferred substrate at high concentrations in batch cultures or simultaneous utilization of many substrates at low concentrations in chemostats. However, it remains unclear how microorganisms utilize substrates at low concentrations in the subsurface: do they focus on a single substrate and exhibit catabolite repression or do they de-repress regulation of all catabolic pathways? Here, we investigated the readiness of Geobacter metallireducens to degrade organic substrates under sessile growth in sediment columns in the presence of a mixed community as a model for aquifers. Three parallel columns were filled with sand and flushed with anoxic medium at a constant inflow (18 ml h-1) of the substrate benzoate (1 mM) with non-limiting nitrate concentrations (30 mM) as electron acceptor. Columns were inoculated with the anaerobic benzoate degrader G. metallireducens. Microbial degradation produced concentration gradients of benzoate toward the column outlet. Metagenomics and label-free metaproteomics were used to detect and quantify the protein expression of G. metallireducens. Bulk benzoate concentrations below 0.2 mM led to increased abundance of catabolic proteins involved in utilization of fermentation products and aromatic compounds including the complete upregulation of the toluene-degrading pathway although toluene was not added to the medium. We propose that under sessile conditions and low substrate concentrations G. metallireducens expresses a specific set of catabolic pathways for preferred substrates, even when these substrates are not present.

13.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32444470

RESUMO

Anaerobic degradation of polycyclic aromatic hydrocarbons has been investigated mostly with naphthalene as a model compound. Naphthalene degradation by sulfate-reducing bacteria proceeds via carboxylation to 2-naphthoic acid, formation of a coenzyme A thioester, and subsequent reduction to 5,6,7,8-tetrahydro-2-naphthoyl-coenzyme A (THNCoA), which is further reduced to hexahydro-2-naphthoyl-CoA (HHNCoA) by tetrahydronaphthoyl-CoA reductase (THNCoA reductase), an enzyme similar to class I benzoyl-CoA reductases. When analyzing THNCoA reductase assays with crude cell extracts and NADH as electron donor via liquid chromatography-mass spectrometry (LC-MS), scanning for putative metabolites, we found that small amounts of the product of an HHNCoA hydratase were formed in the assays, but the downstream conversion by an NAD+-dependent ß-hydroxyacyl-CoA dehydrogenase was prevented by the excess of NADH in those assays. Experiments with alternative electron donors indicated that 2-oxoglutarate can serve as an indirect electron donor for the THNCoA-reducing system via a 2-oxoglutarate:ferredoxin oxidoreductase. With 2-oxoglutarate as electron donor, THNCoA was completely converted and further metabolites resulting from subsequent ß-oxidation-like reactions and hydrolytic ring cleavage were detected. These metabolites indicate a downstream pathway with water addition to HHNCoA and ring fission via a hydrolase acting on a ß'-hydroxy-ß-oxo-decahydro-2-naphthoyl-CoA intermediate. Formation of the downstream intermediate cis-2-carboxycyclohexylacetyl-CoA, which is the substrate for the previously described lower degradation pathway leading to the central metabolism, completes the anaerobic degradation pathway of naphthalene.IMPORTANCE Anaerobic degradation of polycyclic aromatic hydrocarbons is poorly investigated despite its significance in anoxic sediments. Using alternative electron donors for the 5,6,7,8-tetrahydro-2-naphthoyl-CoA reductase reaction, we observed intermediary metabolites of anaerobic naphthalene degradation via in vitro enzyme assays with cell extracts of anaerobic naphthalene degraders. The identified metabolites provide evidence that ring reduction terminates at the stage of hexahydro-2-naphthoyl-CoA and a sequence of ß-oxidation-like degradation reactions starts with a hydratase acting on this intermediate. The final product of this reaction sequence was identified as cis-2-carboxycyclohexylacetyl-CoA, a compound for which a further downstream degradation pathway has recently been published (P. Weyrauch, A. V. Zaytsev, S. Stephan, L. Kocks, et al., Environ Microbiol 19:2819-2830, 2017, https://doi.org/10.1111/1462-2920.13806). Our study reveals the first ring-cleaving reaction in the anaerobic naphthalene degradation pathway. It closes the gap between the reduction of the first ring of 2-naphthoyl-CoA by 2-napthoyl-CoA reductase and the lower degradation pathway starting from cis-2-carboxycyclohexylacetyl-CoA, where the second ring cleavage takes place.


Assuntos
Proteínas de Bactérias/metabolismo , Coenzima A/metabolismo , Deltaproteobacteria/enzimologia , Naftalenos/metabolismo , Oxirredutases/metabolismo , Anaerobiose , Oxirredução
14.
Nat Commun ; 11(1): 1878, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313021

RESUMO

Methane is the second most important greenhouse gas after carbon dioxide and approximately 11% of the global anthropogenic methane emissions originate from rice fields. Sulfate amendment is a mitigation strategy to reduce methane emissions from rice fields because sulfate reducers and methanogens compete for the same substrates. Cable bacteria are filamentous bacteria known to increase sulfate levels via electrogenic sulfide oxidation. Here we show that one-time inoculation of rice-vegetated soil pots with cable bacteria increases the sulfate inventory 5-fold, which leads to the reduction of methane emissions by 93%, compared to control pots lacking cable bacteria. Promoting cable bacteria in rice fields by enrichment or sensible management may thus become a strategy to reduce anthropogenic methane emissions.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Oryza/metabolismo , Solo/química , Agricultura , Ciclo do Carbono , Mudança Climática , Efeito Estufa , Gases de Efeito Estufa , Concentração de Íons de Hidrogênio , Metano/análise , Microeletrodos , Microbiologia do Solo , Sulfatos/metabolismo
15.
ISME J ; 14(2): 623-634, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31728021

RESUMO

Cable bacteria of the family Desulfobulbaceae couple spatially separated sulfur oxidation and oxygen or nitrate reduction by long-distance electron transfer, which can constitute the dominant sulfur oxidation process in shallow sediments. However, it remains unknown how cells in the anoxic part of the centimeter-long filaments conserve energy. We found 16S rRNA gene sequences similar to groundwater cable bacteria in a 1-methylnaphthalene-degrading culture (1MN). Cultivation with elemental sulfur and thiosulfate with ferrihydrite or nitrate as electron acceptors resulted in a first cable bacteria enrichment culture dominated >90% by 16S rRNA sequences belonging to the Desulfobulbaceae. Desulfobulbaceae-specific fluorescence in situ hybridization (FISH) unveiled single cells and filaments of up to several hundred micrometers length to belong to the same species. The Desulfobulbaceae filaments also showed the distinctive cable bacteria morphology with their continuous ridge pattern as revealed by atomic force microscopy. The cable bacteria grew with nitrate as electron acceptor and elemental sulfur and thiosulfate as electron donor, but also by sulfur disproportionation when Fe(Cl)2 or Fe(OH)3 were present as sulfide scavengers. Metabolic reconstruction based on the first nearly complete genome of groundwater cable bacteria revealed the potential for sulfur disproportionation and a chemo-litho-autotrophic metabolism. The presence of different types of hydrogenases in the genome suggests that they can utilize hydrogen as alternative electron donor. Our results imply that cable bacteria not only use sulfide oxidation coupled to oxygen or nitrate reduction by LDET for energy conservation, but sulfur disproportionation might constitute the energy metabolism for cells in large parts of the cable bacterial filaments.


Assuntos
Deltaproteobacteria , Metabolismo Energético , Água Subterrânea/microbiologia , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Microbiologia Ambiental , Hibridização in Situ Fluorescente , Microscopia de Força Atômica , Nitratos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Sulfetos/metabolismo , Enxofre/metabolismo , Microbiologia da Água
16.
Environ Sci Technol ; 53(16): 9481-9490, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31262174

RESUMO

While they are theoretically conceptualized to restrict biodegradation of organic contaminants, bioavailability limitations are challenging to observe directly. Here we explore the onset of mass transfer limitations during slow biodegradation of the polycyclic aromatic hydrocarbon 2-methylnaphthalene (2-MN) by the anaerobic, sulfate-reducing strain NaphS2. Carbon and hydrogen compound specific isotope fractionation was pronounced at high aqueous 2-MN concentrations (60 µM) (εcarbon = -2.1 ± 0.1‰/εhydrogen = -40 ± 7‰) in the absence of an oil phase but became significantly smaller (εcarbon = -0.9 ± 0.3‰/εhydrogen = -6 ± 3‰) or nondetectable when low aqueous concentrations (4 µM versus 0.5 µM) were in equilibrium with 80 or 10 mM 2-MN in hexadecane, respectively. This masking of isotope fractionation directly evidenced mass transfer limitations at (sub)micromolar substrate concentrations. Remarkably, oil-water mass transfer coefficients were 60-90 times greater in biotic experiments than in the absence of bacteria (korg-aq2-MN = 0.01 ± 0.003 cm h-1). The ability of isotope fractionation to identify mass transfer limitations may help study how microorganisms adapt and navigate at the brink of bioavailability at low concentrations. For field surveys our results imply that, at trace concentrations, the absence of isotope fractionation does not necessarily indicate the absence of biodegradation.


Assuntos
Naftalenos , Anaerobiose , Biodegradação Ambiental , Isótopos de Carbono
17.
AMB Express ; 9(1): 109, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31312915

RESUMO

Biological activated carbon (BAC) filters are frequently used in drinking water production for removing dissolved organic carbon (DOC) via adsorption of organic compounds and microbial degradation. However, proper methods are still missing to distinguish the two processes. Here, we introduce reverse stable isotope labelling (RIL) for assessing microbial activity in BAC filters. We incubated BAC samples from three different BAC filters (two granular activated carbon- and one extruded activated carbon-based) in a buffer amended with 13C-labelled bicarbonate. By monitoring the release of 12C-CO2 from the mineralization of DOC, we could demonstrate the successful application of RIL in analysing microbial DOC degradation during drinking water treatment. Changing the water flow rates through BAC filters did not alter the microbial activities, even though apparent DOC removal efficiencies changed accordingly. Microbial DOC degradation activities quickly recovered from backwashing which was applied for removing particulate impurities and preventing clogging. The size distributions of activated carbon particles led to vertical stratification of microbial activities along the filter beds. Our results demonstrate that reverse isotope labelling is well suited to measure microbial DOC degradation on activated carbon particles, which provides a basis for improving operation and design of BAC filters.

18.
FEMS Microbiol Ecol ; 95(6)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31054245

RESUMO

Cable bacteria belonging to the family Desulfobulbaceae couple sulfide oxidation and oxygen reduction by long-distance electron transfer over centimeter distances in marine and freshwater sediments. In such habitats, aquatic plants can release oxygen into the rhizosphere. Hence, the rhizosphere constitutes an ideal habitat for cable bacteria, which have been reported on seagrass roots recently. Here, we employ experimental approaches to investigate activity, abundance, and spatial orientation of cable bacteria next to the roots of the freshwater plant Littorella uniflora. Fluorescence in situ hybridization (FISH), in combination with oxygen-sensitive planar optodes, demonstrated that cable bacteria densities are enriched at the oxic-anoxic transition zone next to roots compared to the bulk sediment in the same depth. Scanning electron microscopy showed cable bacteria along root hairs. Electric potential measurements showed a lateral electric field over centimeters from the roots, indicating cable bacteria activity. In addition, FISH revealed that cable bacteria were present in the rhizosphere of Oryza sativa (rice), Lobelia cardinalis and Salicornia europaea. Hence, the interaction of cable bacteria with aquatic plants of different growth forms and habitats indicates that the plant root-cable bacteria interaction might be a common property of aquatic plant rhizospheres.


Assuntos
Deltaproteobacteria/isolamento & purificação , Raízes de Plantas/microbiologia , Rizosfera , Deltaproteobacteria/genética , Transporte de Elétrons , Água Doce , Sedimentos Geológicos/microbiologia , Hibridização in Situ Fluorescente , Oxirredução
19.
Environ Microbiol ; 21(4): 1267-1286, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30680888

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed pollutants. As oxygen is rapidly depleted in water-saturated PAH-contaminated sites, anaerobic microorganisms are crucial for their consumption. Here, we report the metabolic pathway for anaerobic degradation of phenanthrene by a sulfate-reducing enrichment culture (TRIP) obtained from a natural asphalt lake. The dominant organism of this culture belongs to the Desulfobacteraceae family of Deltaproteobacteria and genome-resolved metagenomics led to the reconstruction of its genome along with a handful of genomes from lower abundance bacteria. Proteogenomic analyses confirmed metabolic capabilities for dissimilatory sulfate reduction and indicated the presence of the Embden-Meyerhof-Parnas pathway, a complete tricarboxylic acid cycle as well as a complete Wood-Ljungdahl pathway. Genes encoding enzymes putatively involved in the degradation of phenanthrene were identified. This includes two gene clusters encoding a multisubunit carboxylase complex likely involved in the activation of phenanthrene, as well as genes encoding reductases potentially involved in subsequent ring dearomatization and reduction steps. The predicted metabolic pathways were corroborated by transcriptome and proteome analyses, and provide the first insights into the metabolic pathway responsible for the anaerobic degradation of three-ringed PAHs.


Assuntos
Deltaproteobacteria/enzimologia , Deltaproteobacteria/genética , Genoma Bacteriano/genética , Oxirredutases/genética , Fenantrenos/metabolismo , Anaerobiose , Biodegradação Ambiental , Deltaproteobacteria/metabolismo , Poluentes Ambientais/metabolismo , Redes e Vias Metabólicas , Família Multigênica , Oxirredução , Proteoma/metabolismo
20.
N Biotechnol ; 49: 1-9, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30502541

RESUMO

Microorganisms are present in oil reservoirs around the world where they degrade oil and lead to changes in oil quality. Unfortunately, our knowledge about processes in deep oil reservoirs is limited due to the lack of undisturbed samples. In this review, we discuss the distribution of microorganisms at the oil-water transition zone as well as in water saturated parts of the oil leg and their possible physiological adaptations to abiotic and biotic ecological factors such as temperature, salinity and viruses. We show the importance of studying the water phase within the oil, because small water inclusions and pockets within the oil leg provide an exceptional habitat for microorganisms within a natural oil reservoir and concurrently enlarge the zone of oil biodegradation. Environmental factors such as temperature and salinity control oil biodegradation. Temperature determines the type of microorganisms which are able to inhabit the reservoir. Proteobacteria and Euryarchaeota, are ubiquitous in oil reservoirs over all temperature ranges, whereas some others are tied to specific temperatures. It is proposed that biofilm formation is the dominant way of life within oil reservoirs, enhancing nutrient uptake, syntrophic interactions and protection against environmental stress. Literature shows that viruses are abundant in oil reservoirs and the possible impact on microbial community composition due to control of microbial activity and function is discussed.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Ecossistema , Campos de Petróleo e Gás/microbiologia , Concentração de Íons de Hidrogênio , Campos de Petróleo e Gás/virologia , Filogenia , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...